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Abstract— For stochastic hybrid systems, safety verification
methods are very little supported mainly because of complexity
and difficulty of the associated mathematical problems. The key
of the methods that succeeded in solving various instances of
this problem is to prove the equivalence of these instances with
known problems. In this paper, we apply the same pattern to
the most general model of stochastic hybrid systems. Stochastic
reachability problem can be treated as an exit problem for
a suitable class of Markov processes. The solutions of this
problem can be characterised using Hamilton Jacobi theory.

I. INTRODUCTION

Stochastic hybrid systems are a class of non-linear stochas-
tic continuous time/space hybrid dynamical systems. For
these systems different models have been developed by many
researchers in the field of hybrid systems. These models can
be used to analyse and design complex embedded systems
that operate in the presence of variability and uncertainty,
and incorporate complex (hybrid/stochastic) dynamics, ran-
domness, multiple modes of operations. Under some natural
assumptions on their parameters, their behaviour can be
described by stochastic processes having good properties. A
very important verification problem for such systems consists
mainly in reachability analysis. The aim of reachability
analysis is to determine the probability that the system will
reach a set of desirable/unsafe states, and the difficulty
of this problem comes from the interaction between dis-
crete/continuous dynamics and the active boundaries.

In the literature, for deterministic hybrid systems there
exist different methods to deal with the reachability problem.
The most used methods are based on optimal control (Hamil-
ton Jacobi equations) such that the computational issues are
solved using dynamic programming. As well, reachability
problem for hybrid systems can be thought of as an exit
problem from a given domain. This also involves solving
a standard Hamilton-Jacobi-Bellman equation over this set
and possibly pieces of its boundary with rather complicated
boundary conditions (see the discussions from [21] and the
references therein).

In the stochastic hybrid system framework, it has been
proved that aiming to tackle stochastic reachability as an
optimal control problem could be a very challenging and
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difficult task [1]. The main explanation for this difficulty
can be found in the structure of the stochastic processes
that describe the behaviour of stochastic hybrid systems.
These processes are Markovian processes with piecewise
continuous paths. Their discontinuities are describe by some
spontaneous jumps (in a Poisson style) and forced jumps
dictated by some guards. In mathematics these forced jumps
are called predictable jumps. Their presence leads to some
discontinuities of the transition probabilities of the Markov
processes considered in this context. The main problem
comes from the fact that the dynamic programming theory
for the Markov processes (that describe the behaviour of
SHS) with predictable jumps is not fully understood and
developed. In most cases, dynamic programming methods
are applied locally to these processes where they behave
nicely like some diffusion processes or, more general, Feller-
Markov processes [17].

For SHS, the stochastic reachability problem means to
compute the probability of the set of those traces that start
with a given probability distribution and hit in a finite/infinite
horizon time a target set. In many papers [19], [23], [18],
the standard methodology to approach this problem is to
approximate the stochastic process that corresponds to the
given hybrid system by simpler processes (like Markov
chains) and then to derive convergence results for the reach
set probabilities. Also, from a computer science perspective,
Markov chain approximations are desirable for probabilistic
model checking. Due to the complexity of such models, the
Markov chain approximations suffer from state space explo-
sion (see [17] and discussions therein). Then, at this point
we are wondering what kind of approximations suit better to
stochastic hybrid processes. Stochastic hybrid processes are
jump type Markov processes. From the control theory and
stochastic analysis perspectives, it seems that such processes
are better studied using diffusion approximations [15].

In this paper, we characterize stochastic reachability either
using expectations of the hitting times for the target sets,
either using probability distribution functions as solutions
of the forward Kolmogorov equation associated with the
underlying Markov process. In both cases, the main idea
is that the reachability problem can be treated as an exit
problem. In the first case, it can be proved that the reach
set probability is exactly the expectation of the probabilistic
event that the first hitting time of the target set (or the
exit time from the complement of this set) is less than the
horizon time. In the second case, we look at the probability
distribution functions of those sets that cover the complement
of the target set. In both cases, the quantities involved can
be characterised as solutions for some appropriate Hamilton
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Jacobi equations [13].
In the mathematical literature, the problem of computing
the escape rate and of the probability distribution of the
escape points on the boundary of a given domain is referred
to as Kolmogorov’s exit problem. There exists a very rich
literature [11], [12], [22], [25] regarding the asymptotic es-
timations for exit time probabilities associated with different
classes of Markov processes. This provides us techniques,
ideas and methodologies that can help in dealing with the
exit problems for SHS. Moreover, many of these classes
of Markov processes can be considered particular stochastic
hybrid processes (Markov processes with Levy generators,
dynamical systems driven by some Markov jump processes,
jump-diffusions).

II. PRELIMINARIES

A. Markov Processes

Let us consider M = (xt, Px) a Markov process with
the state space X . A Markov process retains no memory of
where it has been in the past. Standard definitions can be find
in any textbook [9], [10]. Let F and Ft be the appropriate
completion of σ-algebras F0 = σ{xt|t ≥ 0} and F0

t =
σ{xs|s ≤ t}. Ft describes the history of the process up to the
time t. Technically, with any state x ∈ X we can associate
a natural probability space (Ω,F , Px) where Px is such that
its initial probability distribution is Px(x0 = x) = 1. Strong
Markov property means that the Markov property is still true
with respect to the stopping times of the process M .1 In
particular, any Markov chain is a strong Markov process.
We adjoin an extra point ∆ (the cemetery) to X as an isolated
point, X∆ = X ∪ {∆}. The existence of ∆ is assumed in
order to have a probabilistic interpretation of Px(xt ∈ X) <
1, i.e. at some ‘termination time’ ζ(ω) when the process M
escapes to and is trapped at ∆.
X is equipped with Borel σ-algebra B(X) or shortly B.

Consider the set B(X) of bounded real measurable functions
defined on X , which is a Banach space with the sup-norm
||ϕ|| = supx∈X |ϕ(x)|, ϕ ∈ B(X). The semigroup of
operators (Pt) is given by

Ptf(x) = Exf(xt) =
∫
f(y)pt(x, dy), t ≥ 0 (1)

where Ex is the expectation with respect to Px and pt(x,A),

x ∈ X , A ∈ B represent the transition probabilities, i.e.
pt(x,A) = Px(xt ∈ A). The semigroup property of (Pt)
can be derived from the Chapman-Kolmogorov equations
satisfied by the transition probabilities. The infinitesimal
generator of , denoted by L, is the derivative of Pt at t = 0.
Let D(L) ⊂ Bb(X) be the set of functions f for which the
following limit exists (denoted by Lf )

lim
t↘0

1
t
(Ptf − f) (2)

In most cases, the operator semigroup can be itself charac-
terized by its infinitesimal generator. When D(L) is large

1Recall that a [0,∞]-valued function τ on Ω is called an {Ft}-stopping
time if {τ ≤ t} ∈ Ft, ∀t ≥ 0.

enough, the infinitesimal generator captures the law of the
whole dynamics of a Markov process and provides a tool to
study the Markov process.

B. Kolmogorov Backward and Forward Equations

This subsection recalls some basic facts concerning the
backward and forward Kolmogorov equation for Markov
processes. The forward equation is also known as the Fokker
Planck Kolmogorov equation for diffusion processes. The
Fokker Planck equation is one of the basic tools when dealing
with diffusion processes, because it allows to calculate the
probability density function (pdf) ρt of the process at time
t ≥ 0 given an initial probability density ρ0 and eventually
the stationary pdfs (when they exist).

The semigroup (Pt) of a Markov process M satisfies the
following differential equation: for all f ∈ D(L),

d

dt
Ptf = LPtf . (3)

This equation is called Kolmogorov’s backward equation [9].
In particular, if we define the function u(t, x) = Ptf(x) then
u is solution of the PDE{

∂u
∂t = Lu
u(0, x) = f(x).

Conversely, if this PDE admits a unique solution, then its
solution is given by Ptf(x). Moreover, it is easy to check that
the operators Pt and L commute. Then (3) may be written
as

d

dt
Ptf = PtLf. (4)

This equation is known as Kolmogorov’s forward equation.
It is the weak formulation of the equation d

dtµ
x
t = L∗µxt ,

where the probability measure µxt on X denotes the law of
(xt) conditioned on x0 = x and where L∗ is the adjoint
operator of L.

In particular, if M is a diffusion process on Rn and
if µxt (dy) admits a density q(x; t, y) w.r.t. the Lebesgue
measure, the forward Kolmogorov equation is the weak form
(in the sense of distribution theory) of the PDE

∂

∂t
q(x; t, y) = −

n∑
i=1

∂

∂yi
(bi(y)q(x; t, y)) + (5)

+
d∑

i,j=1

∂2

∂yi∂yj
(aij(y)q(x; t, y))

where bi(x) and aij(x) are respectively the drift coefficient
and the diffusion coefficient of the process. The equation
(5) is known as the Fokker-Planck equation associated to a
diffusion process.

III. STOCHASTIC HYBRID SYSTEMS

We adopt the General Stochastic Hybrid System model
presented in [6], [5]. This subsection describes the model
and establishes the notation.

Let Q be a set of discrete states. For each q ∈ Q, we
consider the Euclidean space Rd(q) with dimension d(q) and
we define an invariant as an open subset Xq of Rd(q). The
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hybrid state space is the set X(Q, d,X ) =
⋃
i∈Q{i} × Xi

and x = (i, zi) ∈ X(Q, d,X ) is the hybrid state. The
closure of the hybrid state space will be X = X ∪ ∂X,
where ∂X =

⋃
i∈Q{i} × ∂Xi. It is known that X can be

endowed with a metric ρ whose restriction to any component
Xi is equivalent to the usual component metric [9]. Then
(X,B(X)) is a Borel space (homeomorphic to a Borel subset
of a complete separable metric space), where B(X) is the
Borel σ-algebra of X . Let B(X) be the Banach space of
bounded positive measurable functions on X with the norm
given by the supremum.

A (General) Stochastic Hybrid System (SHS) is a collec-
tion H = ((Q, d,X ), (b, σ), µ0, (λ,R)), where
• (Q, d,X ) describes the hybrid state space: Q is a count-
able/finite set of discrete states (modes); d : Q → N is a
map giving the dimensions of the continuous state spaces;
X : Q→ Rd(.) maps each q ∈ Q into an open subset Xq of
Rd(q);
• (b, σ) provides the coefficients of the diffusion part (con-
tinuous dynamics in modes): b : X(Q, d,X ) → Rd(.) is a
vector field; σ : X(Q, d,X ) → Rd(·)×m is a X(·)-valued
matrix, m ∈ N,
• µ0 is the initial probability measure defined on (X,B(X));
• (λ,R) gives the jumping mechanism: λ : X(Q, d,X ) →
R+ is a transition rate function; R : X × B(X) → [0, 1] is
a stochastic kernel that provides the post-jump location.

The realization of an SHS is built as a Markov string [6]
obtained by the concatenation of the paths of some diffusion
processes (zit), i ∈ Q together with a jumping mechanism
given by a family of stopping times (Si). Let ωi be a
diffusion trajectory, which starts in (i, zi) ∈ X . Let t∗(ωi)
be the first hitting time of ∂Xi of the process (xit). Define
the function

F (t, ωi) = I(t<t∗(ωi)) exp(−
∫ t

0

λ(i, zis(ωi))ds).

This function will be the survivor function for the stopping
time Si associated to the diffusions (zit).

A stochastic process xt = (q(t), z(t)) is called an SHS
realization if there exists a sequence of stopping times T0 =
0 < T1 < T2 ≤ . . . such that for each k ∈ N,
• x0 = (q0, z

q0
0 ) is a Q×X-valued random variable chosen

according to the probability distribution µ0;
• For t ∈ [Tk, Tk+1), qt = qTk

is constant and z(t) is a
solution of the stochastic differential equation (SDE):

dz(t) = b(qTk
, z(t))dt+ σ(qTk

, z(t))dWt (6)

where Wt is a the m-dimensional standard Wiener process;
• Tk+1 = Tk + Sik where Sik is chosen according to the
survivor function F .
• The post jump location x(Tk+1) is sampled according to
the probability distribution R

(
(qTk

, z(T−k+1)), ·
)
.

The realization of any SHS, H , under standard assump-
tions (about the diffusion coefficients, non-Zeno executions,
transition measure, etc, see [6] for a detailed presentation) is
a strong Markov process. Let M = (Ω,F ,Ft, xt, Px) be the

strong Markov process associated to H . The sample paths
of M are right continuous with left limit, i.e. cadlags.

The infinitesimal generator of an SHS is an integro-
differential operator. It has been proved in [5] that the
extended generator of an SHS has the following expression:

Lf(x) = Lcontf(x) + λ(x)
∫
X

(f(y)− f(x))R(x, dy) (7)

where Lcontf(x) has the standard form of the diffusion
infinitesimal operator. What makes this generator different
from the generator of a Feller Markov process (like a
diffusion process) is its domain that contains at least the
set of second order differentiable functions that satisfy the
boundary condition, as follows:

f(x) =
∫

X
f(y)R(x, dy), x ∈ ∂X.

In the presence of forced jumps, the generator of an SHS
is an operator that is difficult to deal with, since its domain
does not even contain the set of all compactly supported C∞

functions.

IV. STOCHASTIC REACHABILITY

Let us consider M = (Ω,F ,Ft, xt, Px) being a (strong
right) Markov process, the realization of a stochastic hybrid
system H . For this strong Markov process we address a
verification problem consisting of the following stochastic
reachability problem.

Given a target set, the objective of the reachability problem
is to compute the probability that the system trajectories from
an arbitrary initial state will reach the target set.
Formally, given a set A ∈ B(X) and a time horizon T > 0,
let us define:
ReachT (A) = {ω ∈ Ω | ∃t ∈ [0, T ] : xt(ω) ∈ A}
Reach∞(A) = {ω ∈ Ω | ∃t ≥ 0 : xt(ω) ∈ A}.

These two sets are the sets of trajectories of M , which
reach the set A (the flow that enters A) in the interval of
time [0, T ] or [0,∞). The reachability problem consists of
determining the probabilities of such sets. The probabilities
of reach events are

P (TA < T ) or P (TA < ζ) (8)

where ζ is the life time of M and TA is the first hitting time
of A

TA = inf{t > 0|xt ∈ A} (9)

and P is a probability on the measurable space (Ω,F) of
the elementary events associated to M . P can be chosen to
be Px (if we want to consider the trajectories that start in
x) or Pµ0

((if we want to consider the trajectories with an
initial condition chosen according to an initial probability
distribution µ0).

Denote by PA the hitting operator associated to the
underlying Markov process (xt), i.e.

PAv = Ex{v ◦ xTA
|TA < ζ} (10)

and TA is given by (9).
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Proposition 1: [7] For any x ∈ X and Borel set A ∈
B(X), we have

Px[Reach∞(A)] = PA1(x) = Px[TA < ζ].
Note that the first hitting time of A is equal with the first

exit time from the complementary set of A, E = Ac = X\A.
Then, the stochastic reachability problem can be formulated
as an exit problem for the right Markov processes that
appear as realizations of SHS. These processes may be
viewed as piecewise continuous jump diffusions, where the
jumps are allowed to be spontaneous, or forced (predictable).
For continuous pure diffusions processes, it is sufficient to
consider the time when the process hits the boundary of E
or A. However, when the stochastic processes also includes
jumps, then it is possible that the process overshoots the
boundary and ends up in the exterior of the domain E (i.e.
in the interior of A).

An important quantity that can be computed without
explicitly constructing the transition probability density func-
tion is the mean first passage time of the process from a
specified domain. The mean first passage time is a measure
of the stochastic time scale for the process to be in a specified
domain. The mean first passage time is a solution of a
boundary value problem involving the backward Kolmogorov
operator (the adjoint of the operator in the forward equation).
If the process is a continuous diffusion with the infinitesimal
generator L and the target set A is a closed set, it is known
that if the PDE (Dirichlet problem)

∂u
∂t = Lu on E × (0, T ]
u = 0 on E × {0}
u = 1∂E on ∂E × (0, T ]

has a bounded solution, then

u(x, t) = Px{TA ≤ t, xTA
∈ ∂E}, 0 ≤ t ≤ T. (11)

A possible approach is to consider another process x̃t that
coincides with xt up to time T−A and then goes to a terminal
state ∆. Then

Pµ0
(TA < T ) = Pµ0

(x̃T = ∆) = q(∆, T )

and q(∆, T ) can be computed as solution for the Fokker
Planck Kolmogorov equation associated to the diffusion
process.

Let us consider the logarithmic transformation of reacha-
bility function u(x, t) given by (11), i.e.

h = − lnu

This implies that u is the Laplace transform of h, i.e. u =
e−h. Then h is the solution of the following Hamilton Jacobi
equation [13]: −∂h∂t − bDxh+ 1

2DxhaDxh
′ = 0 in E × (0, T )

h(x, t) = 0 on ∂E × [0, T ]
h(x, t)→ +∞ as t↗ T if x ∈ E.

Let us consider an SHS H =
((Q, d,X ), (b, σ), µ0, (λ,R)) defined as in the Section

III, with a finite number of modes (cardQ < ℵ0). We can
suppose that H has only forced jumps, no spontaneous
jumps. This can be achieved introducing an extra variable
that “simulates” the spontaneous jumps [9]
Suppose that the target set A is closed and E its complement.
Denote Eq = Xq∩E, q ∈ Q. Then {∂Eq|q ∈ Q} represents
a partition of the boundary ∂E. Suppose that suppµ0 ⊂ E
(µ0 is the initial probability measure). The first quantities we
need to compute are

uq(t) = Px(TA < t, xTA
∈ ∂Eq}, q ∈ Q, 0 ≤ t ≤ T.

Then, for each q ∈ Q, uq is solutions of the Dirichlet
problem associated to the diffusion process associated to the
mode q (see the previous paragraph). The desired ρq could
be recovered from uq , if the initial probability distribution
for each mode is known.

The purpose of this paper is to study the problem of
stochastic reachability as an exit problem for an appropriate
stochastic process. For this we need to develop another
perspective on reachability as follows.
The exact stochastic reachable set at time T is defined
as the probability distribution µT of the state (xt), which
is the realization of the SHS H , for an initial probability
distribution µ0. Given a set A ∈ B(X) and a time horizon
T > 0, let us define
• The enclosing hull of all probability distribution µt

within a time interval t ∈ [0, T ] denoted by µ[0,T ]

and given by:

µ[0,T ] = sup{µt|t ∈ [0, T ], P (x0 ∈ ·) = µ0(·)}

• The over-approximated reachable set probability as

µ[0,T ](A) = sup{µ[0,T ](F )|F ∈ B(X);F ⊆ E = Ac}

The quantity µ[0,T ](A) can capture the cases when the
first hitting time of A is NOT the first hitting time of its
boundary. These cases may appear due to the discontinuities
of (xt) when it makes the spontaneous discrete transitions.
The main tool in the computation of this type of measure
will be the forward Kolmogorov equation associated to our
Markovian process.

V. FORWARD AND BACKWARD KOLMOGOROV EQUATION
FOR SHS

The realization of an SHS is described by a Markov
jump type process. Jump process is understood in a rather
large sense, i.e. process with discontinuities in the natural
filtration. A complete description of a Markov jump process
is given by its transition density function, which is the
solution of the forward and backward Kolmogorov equation.
The forward Kolmogorov equation is known also as the
Fokker Planck equation. Through it is not always possible to
find the transition probability density function for a Markov
jump process for all times, some important questions can
be satisfactorily answered by computing such quantities as
the stationary density or the quasi-stationary density. The
quasi-stationary density represents an approximation to the
eigenfunction corresponding to the smallest eigenvalue of
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the Kolmogorov operator. Thus it describes the long time
behavior of the process.

The backward Kolmogorov equation of a stochastic hybrid
process M (realization of an SHS defined as in Section III)
is
d

dt
Ptf = LcontPtf(x)+λ(x)

∫
X

(Ptf(y)−Ptf(x))R(x, dy)

(12)
A generalised Fokker Planck equation is well known for

the case of switching diffusions (where there are no forced
transitions). A unifying formulation of the Fokker-Planck-
Kolmogorov (FPK) equation for general stochastic hybrid
systems is developed in [3]. The FPK equation for SHS is
based on the concept of mean jump intensity. Let us define
a positive measure J on X × (0,∞) by

J(A) = Eµ0
{
∑
k≥0

1A(x−Tk
, Tk)}.

For any Γ ∈ B, the quantity J(Γ × (0, t]) is the expected
number of jumps starting from Γ during the interval (0, t].

Suppose that there exists a mapping r : t 7→ rt, from
[0,∞) to the set of all bounded measures on X such that
for all Γ ∈ B, we have: (a) t 7→ rt(Γ) is measurable; (b) for
all t ≥ 0,

J(Γ× (0, t]) =
∫ t

0

rs(Γ)ds.

Then r is called the mean jump intensity of the process M
under the initial law µ0.

The generalised FPK equation can be written symmetri-
cally as

µ
′

t = L∗contµt +
∫

(Wt(dx, ·)−Wt(·, dx)) (13)

where Wt(dx, dy) = rt(dx)R(x, dy), or

µ
′

t = L∗contµt + rt(R− I)

where I is the identity kernel, i.e. I(x, dy) = δx(dy). Here,
L∗cont is the adjoint of Lcont (the continuous part of the
infinitesimal operator of M ) in the sense of distribution
theory.

Remark that in the case of stochastic hybrid processes, the
forward and backward Kolmogorov equations are parabolic
integro partial differential equations.

VI. DEALING WITH STOCHASTIC REACHABILITY

In this section, we give a theoretical characterization of
the reach set probabilities as solutions for some appropriate
Hamilton Jacobi equations.

A. Variational inequalities

Let X be a bounded open set in RN with smooth bound-
ary. RN can be thought of as the Euclidean space where the
state space of a stochastic hybrid system can be embedded.

According to [2], [20], for the existence of the viscosity
solutions some assumptions are necessary. For the Dirichlet
problem given by (15) and (16), these assumptions can be
formulated as follows:

(A.1) F ∈ C(RN × R× RN × SN × R),
(A.2) F satisfies the local and non-local degenerate ellipticity
condition(s): for any x ∈ RN , u ∈ R, p ∈ RN , A,B ∈ SN ,
l1, l2 ∈ R

F (x, u, p, A, l1) ≤ F (x, u, p,B, l2) if A ≥ B, l1 ≥ l2

(A.3) R(x, ·) is a probability measure on X for x ∈ ∂X
such that the linear operator

Rv(x) =
∫
X

v(y)R(x, dy) (14)

satisfies

|Rv(x)| ≤ C||v||L1(X), for all v ∈ L1(X)

where C does not depend on v.
(A.4) The function x 7−→ Rv(x) is continuous w.r.t. x ∈ X ,
uniformly for v ∈ L∞(X).

Motivated by the expression of the generator associated
to an SHS, let us consider the linear integro-differential
equations of the following form:

∂tu+ F (x, u,Dxu,D
2
xu,

∫
X

u(y)R(x, dy)) = 0, (15)

where Dxu denotes the space gradient, D2
xu the matrix of

second derivatives and R(x, ·) is a probability kernel. Here,
SN denotes the space of symmetric N ×N real valued ma-
trices. The applications for (15) are dynamic programming
equations associated with the control of the right Markov
processes that appear as SHS realizations.

In the case when the state space X is a bounded domain
of a Euclidean space, the process jumps back into X upon
hitting the boundary, which leads to the following boundary
condition to be coupled with the equation (15),

u(x) =
∫
X

u(y)R(x, dy), x ∈ ∂X . (16)

For a bounded function u : R × X → R, its up-
per/lower semicontinuous envelopes can be defined in a
standard way [20], [2]. Furthermore, the definitions of the
viscosity (sub/super) solutions for second-order parabolic
integro-differential equations are well established now in the
literature [2].

Let u be a bounded function.
(i) u∗ is a viscosity subsolution of (15) if

∂tu
∗ + F (x, u∗, Dxφ,D

2
xφ,

∫
X

u∗(y)R(x, dy) ≤ 0

for any φ ∈ C2(X) and any local maximum x for u∗ − φ.
(ii) u∗ is a viscosity supersolution of (15) if

∂tu∗ + F (x, u∗, Dxφ,D
2
xφ,

∫
X

u∗(y)R(x, dy) ≥ 0

for any φ ∈ C2(X) and any local minimum x for u∗ − φ.
(iii) u is a viscosity solution if u is a viscosity sub- and
supersolution.
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A bounded function u : R×X → R is a vis-
cosity subsolution (resp. supersolution) of the Dirich-
let problem given by (15) and (16), if it is a sub-
solution (resp. supersolution) of (15) in X and, any
φ ∈ C2(X) and any local maximum (resp. minimum)
x ∈ ∂X for u∗ − φ (resp. u∗ − φ) min{u∗(x) −
k(x), F (x, u∗, Dxφ,D

2
xφ,
∫
X
u∗(y)R(x, dy)} ≤ 0 (resp.

max{u∗(x)−k(x), F (x, u∗, Dxφ,D
2
xφ,
∫
X
u∗(y)R(x, dy)} ≥

0) where k(x) :=
∫
X
u(y)R(x, dy), x ∈ ∂X .

In general, the existence of the solutions is proved by
Perron’s method, introduced in the viscosity setting in [14].
That is, one proves that the supremum of a suitable set of
subsolutions is the solution. In order to do this, one needs
the help of a comparison principle.

B. Hamilton Jacobi Equations

Let us consider a stochastic hybrid system H =
((Q, d,X ), (b, σ), µ0, (λ,R)) and the reachability problem
for a target set A, as defined in Section IV. For T > 0,
we consider the reach set probability function

u(x, t) = Px{TA ≤ t, xTA
∈ ∂E}, 0 ≤ t ≤ T

and its logarithmic transformation

h = − lnu.

Proposition 2: Under the standard hypotheses that ensure
the existence and uniqueness of realization M of a SHS H
[6], h is the viscosity solution of the following Hamilton
Jacobi equation
− ∂
∂th(x, t) +H(x,Dxh(x, t), D2

xh(x, t)) = 0,
(x, t) ∈ E × [0, T )

h(x, t) = 0, (x, t) ∈ ∂E × [0, T ]
h(x, t)→∞, as t↗ T if x ∈ E,
where Hamiltonian operator is given by
H(x,Dxϕ(x, t), D2

xϕ(x, t)) =
= −b(x)Dxϕ+ 1

2DxϕσDxϕ
′ +
∫
∂X

exp(ϕ(x)−
−ϕ(x+ y))R(x, dy),

for any test function ϕ ∈ C2(X).

Obvious methods for defining the probability distributions
for SHS as viscosity solutions for the Fokker Planck Kol-
mogorov equations can be introduced. The main advantage,
in this case, is the fact that the parabolic integro-differential
equations involved do not have boundary conditions that are
difficult to deal with.

VII. CONCLUSIONS

In this paper, we have developed characterisations of
the reach set probabilities for stochastic hybrid systems as
viscosity solutions for the Dirichlet problem associated to
some parabolic integro partial differential equations. The
corner stone of this approach was to present the stochastic
reachability problem as an exit problem for Markov pro-
cesses with piecewise diffusion behaviour and forced jumps.
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